

US 20170062539A1

(19) **United States**

(12) **Patent Application Publication**

Tsai et al.

(10) **Pub. No.: US 2017/0062539 A1**

(43) **Pub. Date: Mar. 2, 2017**

(54) **SILICON AND SEMICONDUCTING OXIDE THIN-FILM TRANSISTOR DISPLAYS**

(71) Applicant: **Apple Inc.**, Cupertino, CA (US)

(72) Inventors: **Tsung-Ting Tsai**, Santa Clara, CA (US); **Vasudha Gupta**, Cupertino, CA (US); **Chin-Wei Lin**, Cupertino, CA (US)

(21) Appl. No.: **15/351,266**

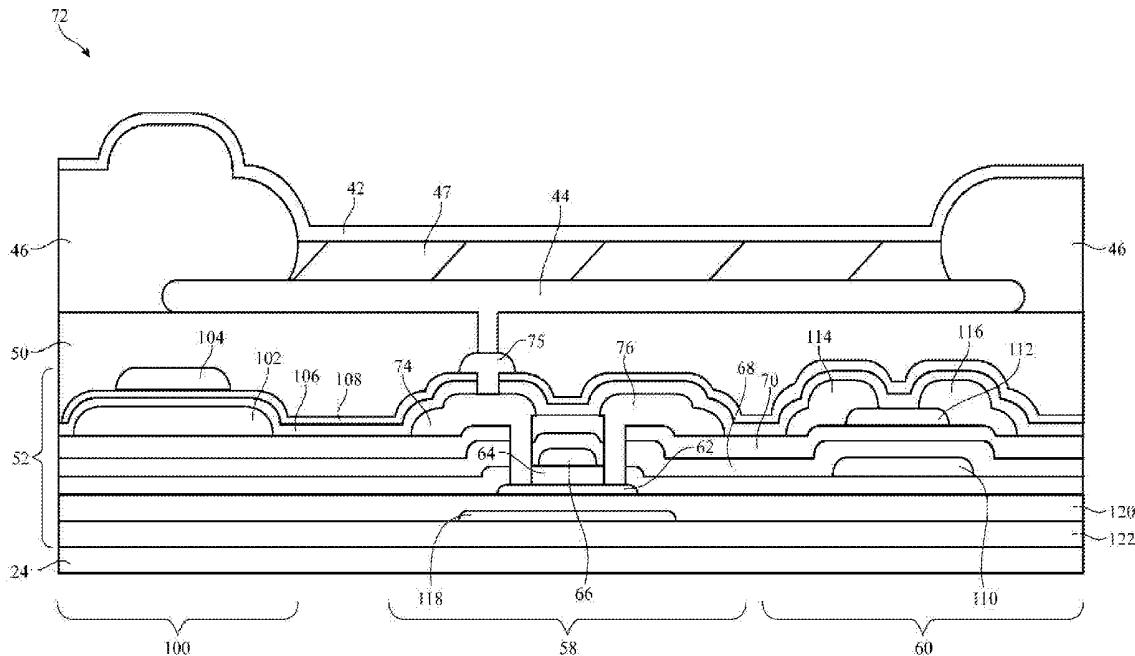
(22) Filed: **Nov. 14, 2016**

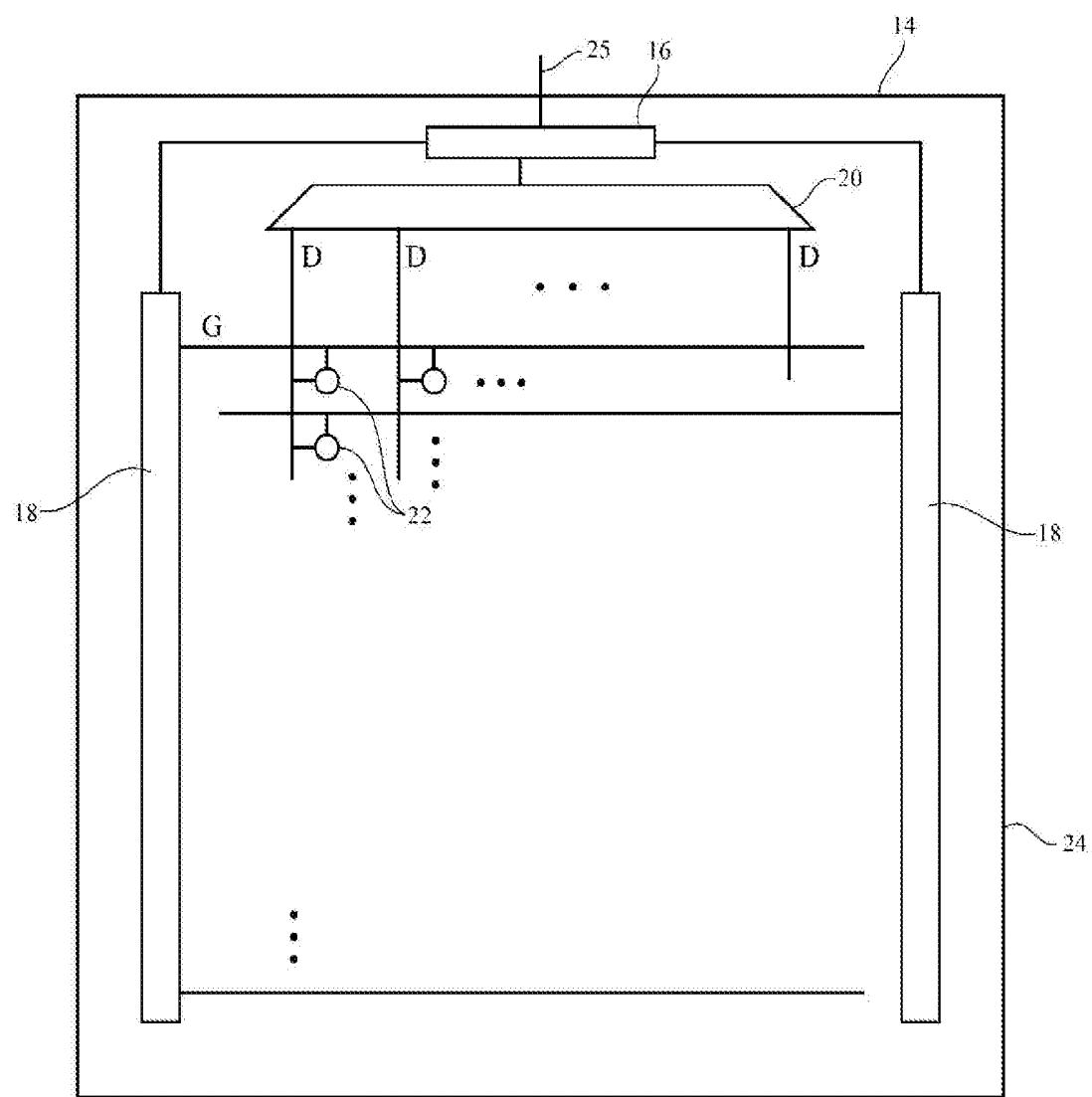
Related U.S. Application Data

(63) Continuation of application No. 14/494,931, filed on Sep. 24, 2014, now Pat. No. 9,543,370.

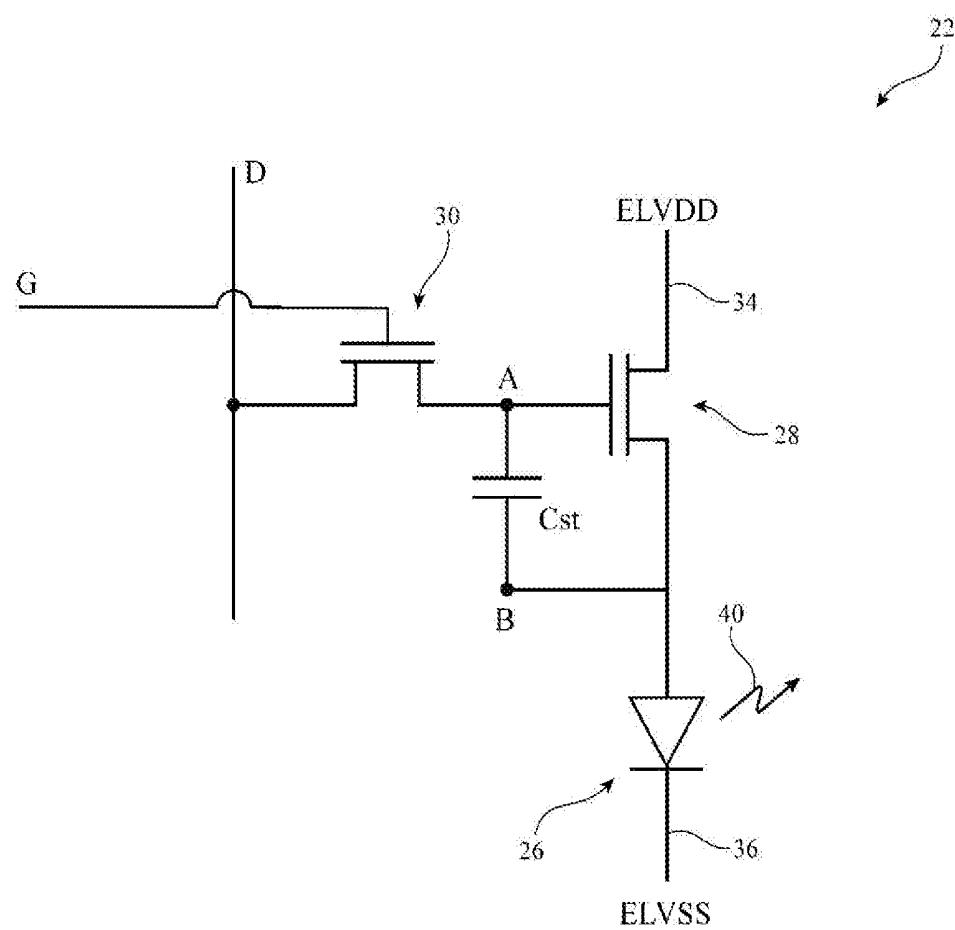
Publication Classification

(51) **Int. Cl.**


H01L 27/32 (2006.01)
H01L 51/00 (2006.01)
H01L 27/12 (2006.01)


(52) **U.S. Cl.**

CPC **H01L 27/3262** (2013.01); **H01L 27/1225** (2013.01); **H01L 51/0097** (2013.01); **H01L 27/3276** (2013.01); **H01L 27/3258** (2013.01); **H01L 27/3265** (2013.01); **H01L 29/78672** (2013.01)


ABSTRACT

An electronic device display may have an array of pixel circuits. Each pixel circuit may include an organic light-emitting diode and a drive transistor. Each drive transistor may be adjusted to control how much current flows through the organic light-emitting diode. Each pixel circuit may include one or more additional transistors such as switching transistors and a storage capacitor. Semiconducting oxide transistors and silicon transistors may be used in forming the transistors of the pixel circuits. The storage capacitors and the transistors may be formed using metal layers, semiconductor structures, and dielectric layers. Some of the layers may be removed along the edge of the display to facilitate bending. The dielectric layers may have a stepped profile that allows data lines in the array to be stepped down towards the surface of the substrate as the data lines extend into an inactive edge region.

FIG. 1

FIG. 2

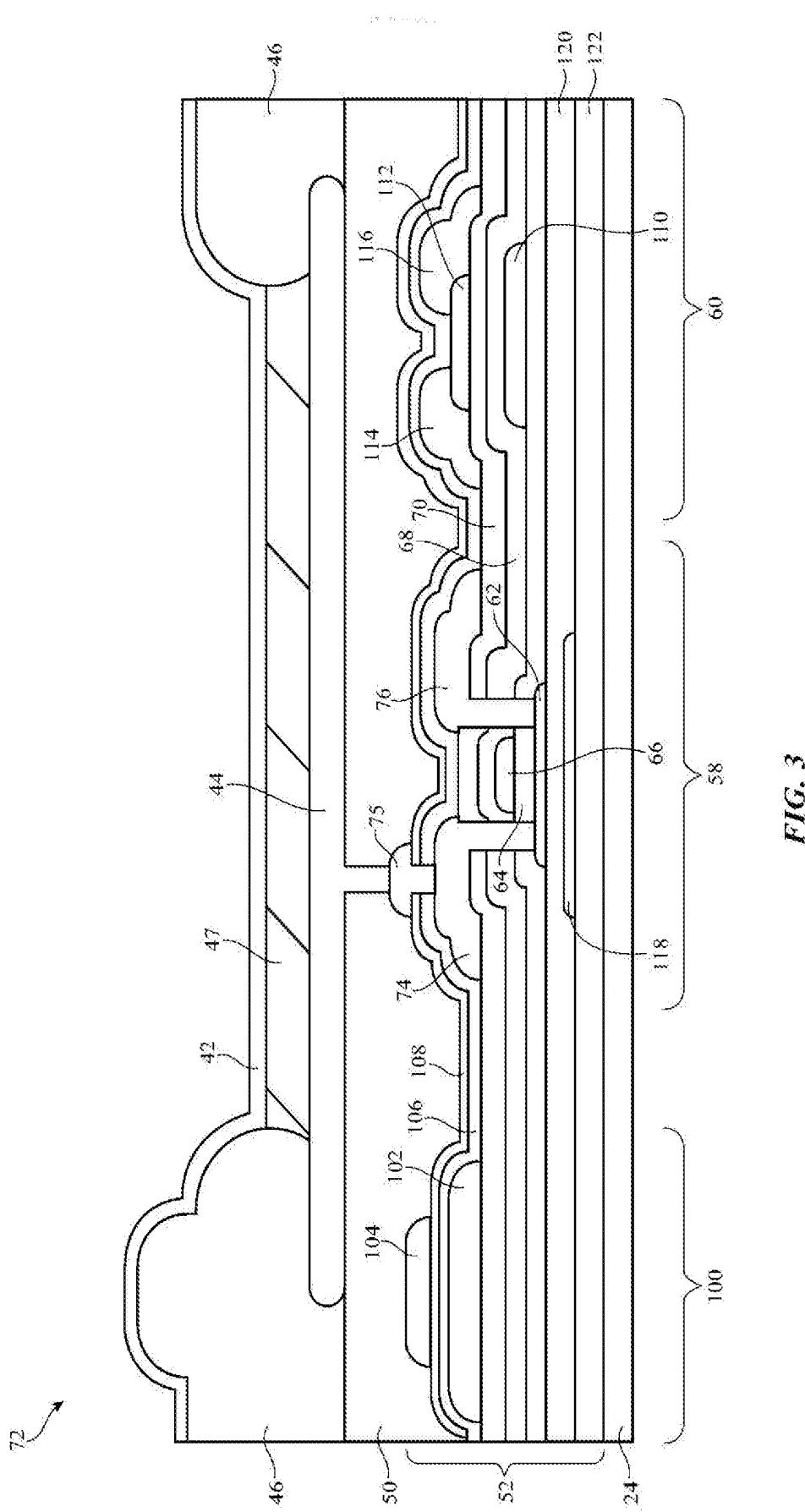


FIG. 3

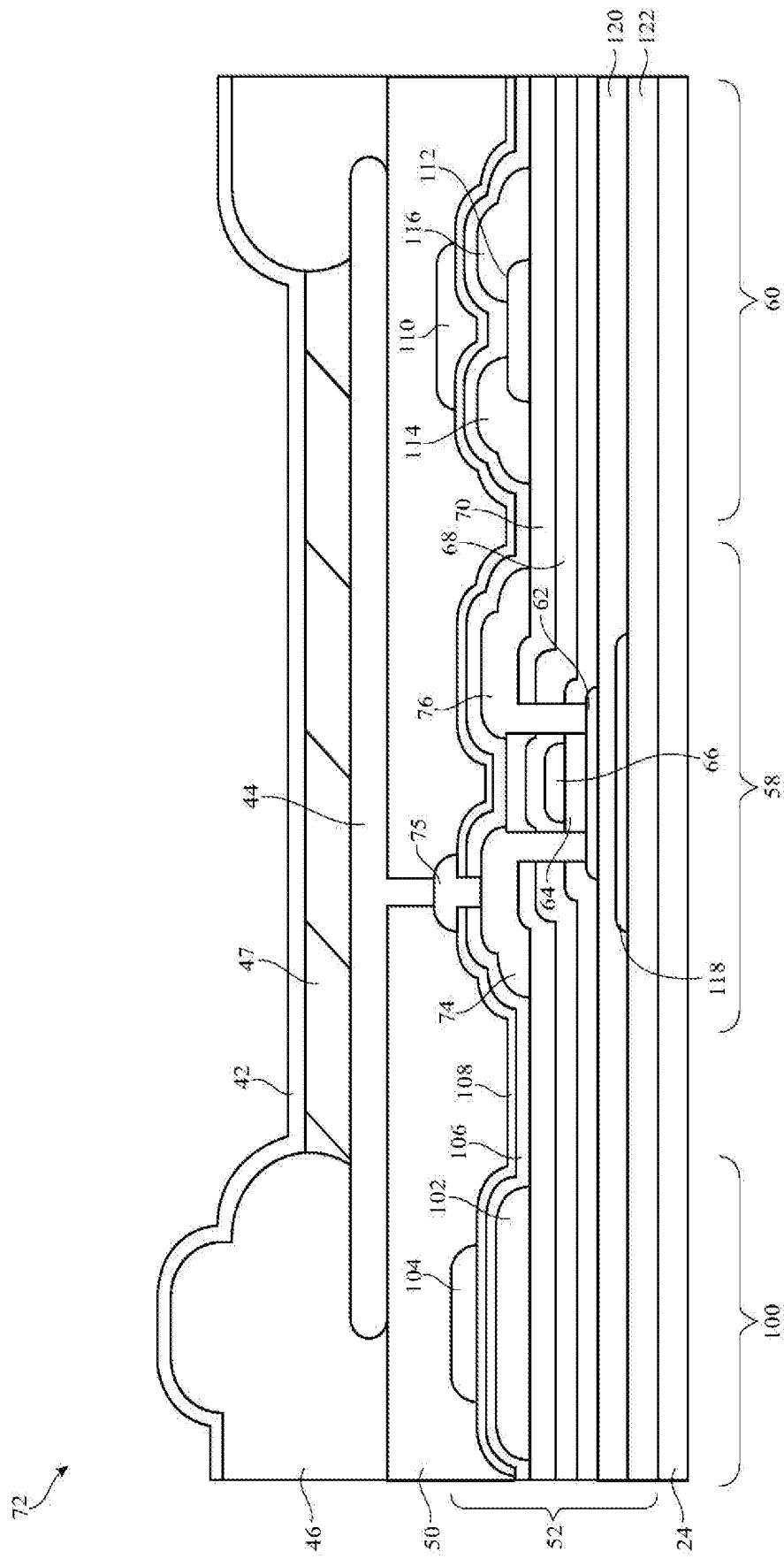


FIG. 4

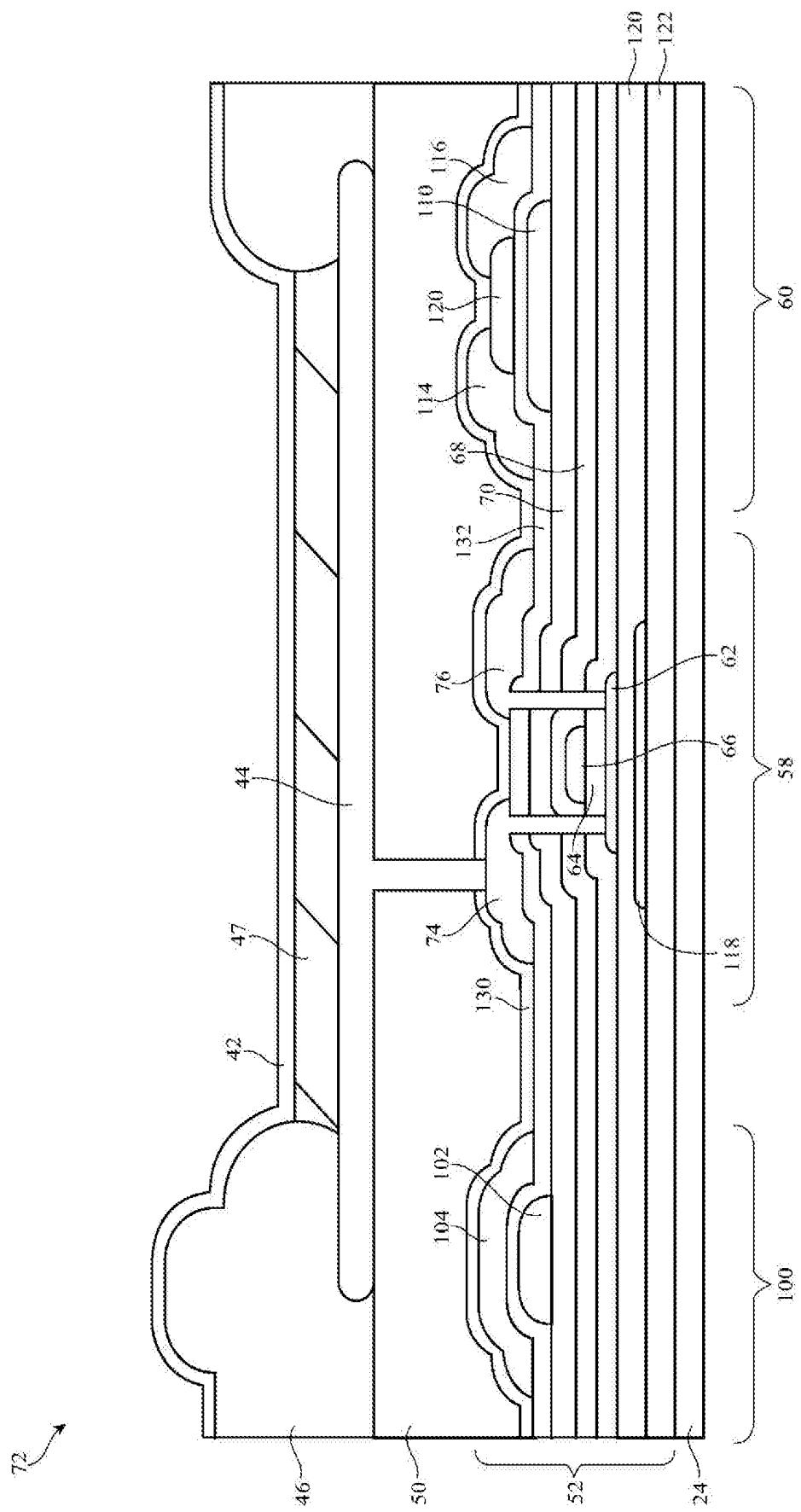


FIG. 5

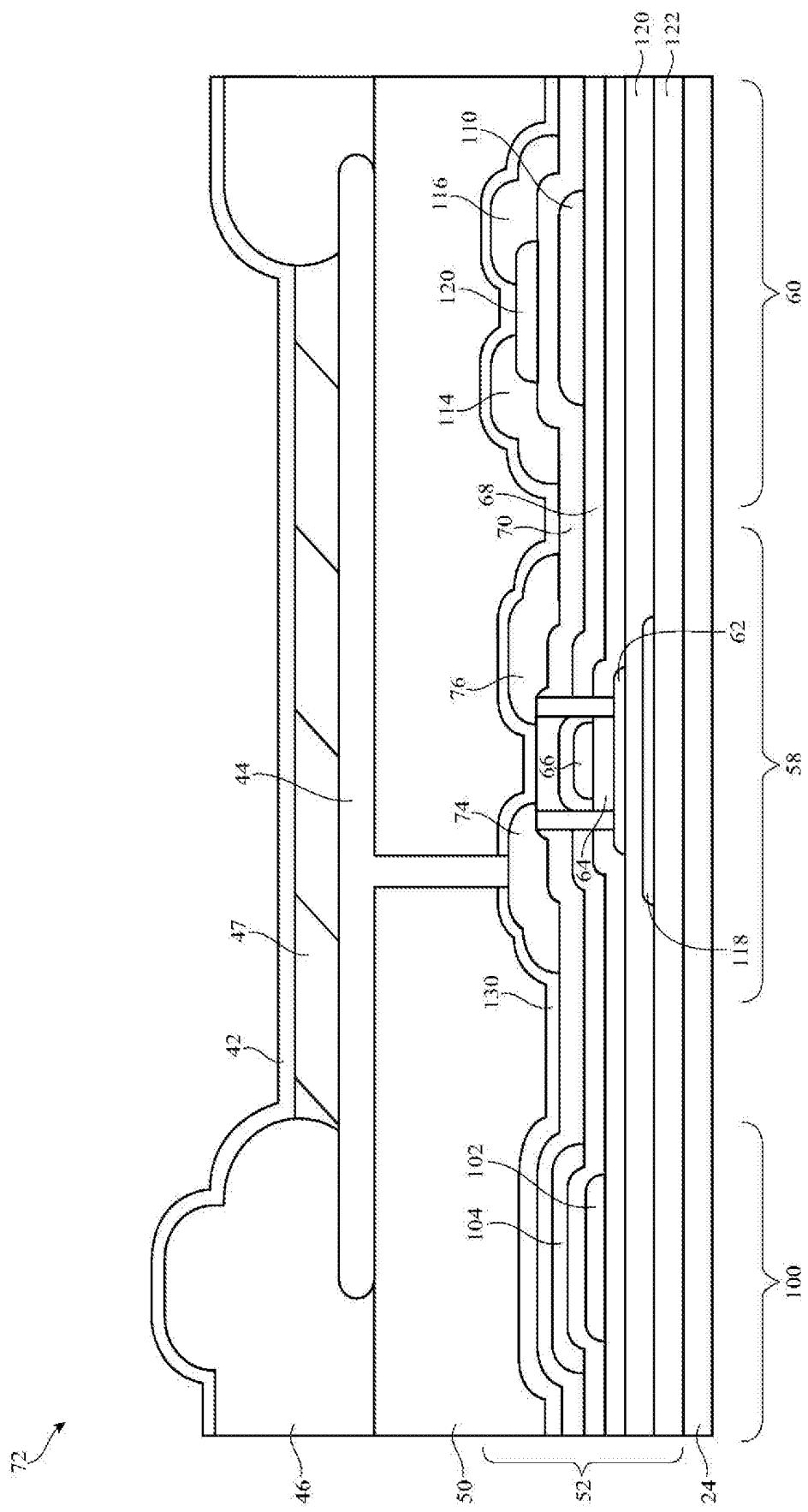


FIG. 6

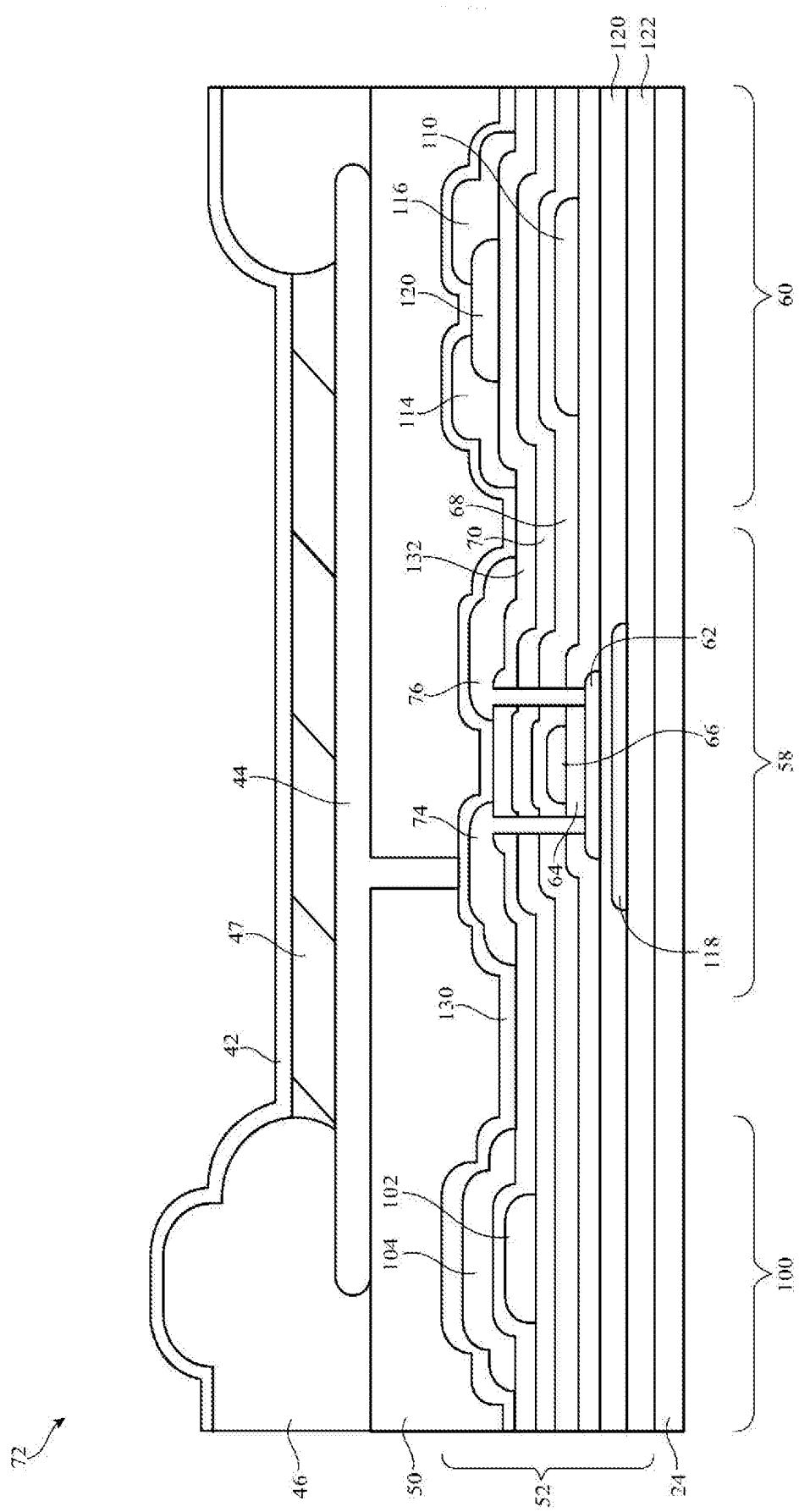
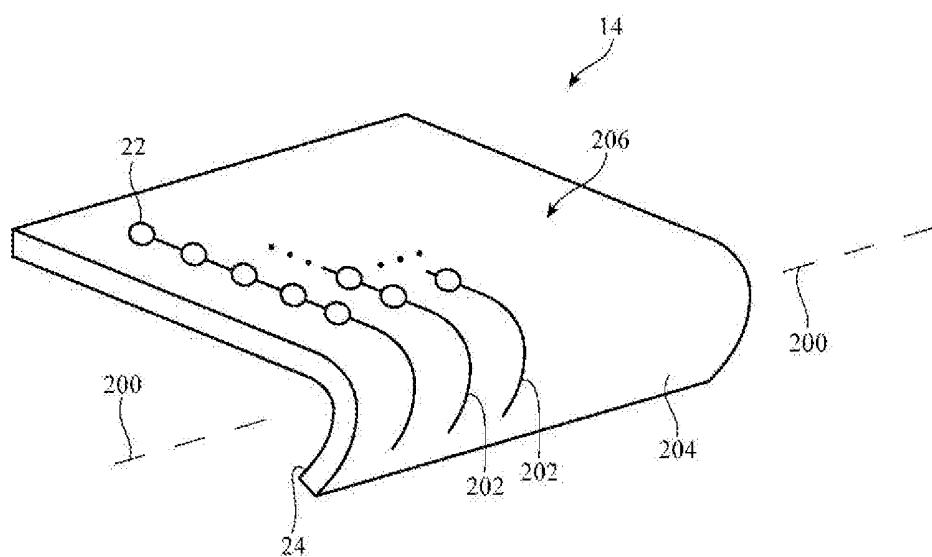
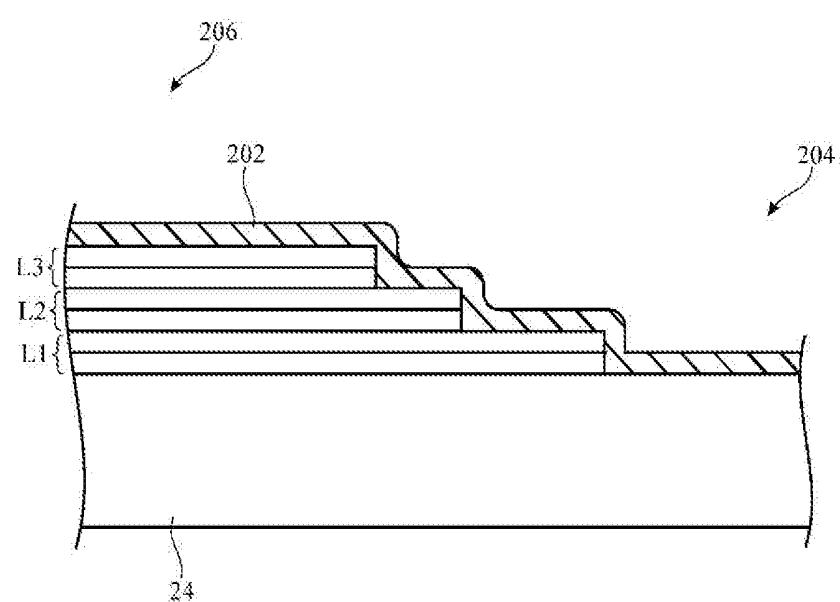




FIG. 7

FIG. 8

FIG. 9

FIG. 10

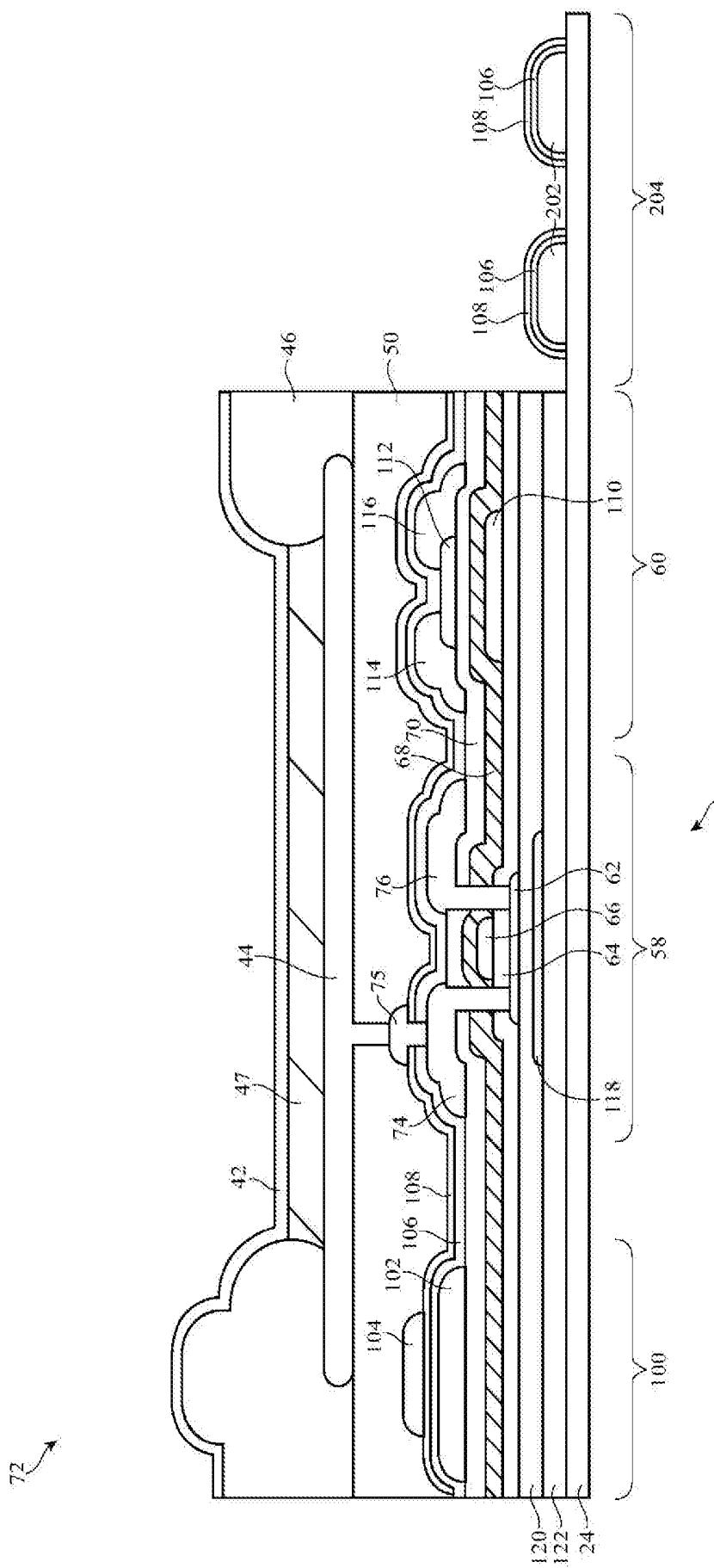


FIG. II

SILICON AND SEMICONDUCTING OXIDE THIN-FILM TRANSISTOR DISPLAYS

[0001] This application is a continuation of U.S. patent application Ser. No. 14/494,931, filed Sep. 24, 2014, which is hereby incorporated by reference herein in its entirety. This application claims the benefit of and claims priority to patent application Ser. No. 14/494,931, filed Sep. 24, 2014.

BACKGROUND

[0002] This relates generally to electronic devices and, more particularly, to electronic devices with displays that have thin-film transistors.

[0003] Electronic devices often include displays. For example, cellular telephones and portable computers include displays for presenting information to users.

[0004] Display's such as organic light-emitting diode displays have an array of pixels based on light-emitting diodes. In this type of display, each pixel includes a light-emitting diode and thin-film transistors for controlling application of a signal to the light-emitting diode.

[0005] If care is not taken, the thin-film transistor circuitry of a display may exhibit excessive transistor leakage current, insufficient transistor drive strength, poor area efficiency, hysteresis, non-uniformity, and other issues. It could therefore be desirable to be able to provide improved electronic device displays.

SUMMARY

[0006] An electronic device may include a display. The display may have pixels that form an active area. An inactive border area may extend along an edge portion of the active area. The pixels may be formed from an array of pixel circuits on a substrate. The substrate may be formed from a rigid material or may be formed from a flexible material that bends in the inactive area.

[0007] Each pixel circuit may include an organic light-emitting diode and a drive transistor coupled to that organic light-emitting diode. Each drive transistor may be adjusted to control how much current flows through the organic light-emitting diode to which it is coupled and how much light is therefore produced by that diode. Each pixel circuit may include one or more additional transistors such as switching transistors and may include a storage capacitor.

[0008] Semiconducting oxide transistors and silicon transistors may be used in forming the transistors of the pixel circuits. For example, semiconducting oxide transistors may be used as switching transistors and silicon transistors may be used as drive transistors. There may be a single drive transistor and one or more additional transistors per pixel circuit.

[0009] The storage capacitors and the transistors may be formed using metal layers, semiconductor structures, and dielectric layers. The dielectric layers may have a stepped profile that allows data lines in the array of pixel circuits to be gradually stepped down towards the surface of the substrate as the data lines extend into an inactive bent edge region of the display. Some or all of the dielectric layers may be removed in inactive edge region to facilitate bending.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a diagram of an illustrative display such as an organic light-emitting diode display having an array of organic light-emitting diode pixels in accordance with an embodiment.

[0011] FIG. 2 is a diagram of an illustrative organic light-emitting diode display pixel of the type that may be used in an organic light-emitting diode with semiconducting oxide thin-film transistors and silicon thin-film transistors in accordance with an embodiment.

[0012] FIG. 3 is a cross-sectional side view of illustrative thin-film transistor structures for a display pixel in a configuration in which a semiconducting oxide thin-film transistor has been formed using a bottom gate arrangement in accordance with an embodiment.

[0013] FIG. 4 is a cross-sectional side view of illustrative thin-film transistor structures for a display pixel in a configuration in which a semiconducting oxide thin-film transistor has been formed using a top gate arrangement in accordance with an embodiment.

[0014] FIG. 5 is a cross-sectional side view of illustrative thin-film transistor structures for a display pixel in a configuration in which a semiconducting oxide thin-film transistor has been formed using a bottom gate arrangement and in which a storage capacitor has a first electrode patterned from the same metal layer as the gate of the semiconducting oxide thin-film transistor and a second electrode that also forms transistor source-drain electrodes in accordance with an embodiment.

[0015] FIG. 6 is a cross-sectional side view of illustrative thin-film transistor structures for a display pixel in a configuration in which a semiconducting oxide thin-film transistor has been formed using a bottom gate arrangement and in which a storage capacitor has been formed using a lower electrode patterned from a layer of metal that also serves as a thin-film transistor gate metal in a silicon transistor in accordance with an embodiment.

[0016] FIG. 7 is a cross-sectional side view of illustrative thin-film transistor structures for a display pixel in a configuration in which a semiconducting oxide thin-film transistor has been formed using a bottom gate arrangement having three layers of interlayer dielectric interposed between its gate and its channel in accordance with an embodiment.

[0017] FIG. 8 is a perspective view of an illustrative display with a bent edge in accordance with an embodiment.

[0018] FIG. 9 is a cross-sectional side view of illustrative stepped dielectric layers for a display with a bent edge in accordance with an embodiment.

[0019] FIG. 10 is a cross-sectional side view of illustrative thin-film transistor structures for a display in a configuration in which upper layers of material have been removed from the display to facilitate display bending in an inactive area along the edge of the display in accordance with an embodiment.

[0020] FIG. 11 is a cross-sectional side view of illustrative thin-film transistor structures for a display in a configuration in which upper layers of material have been removed from the display to facilitate display bending in a bend region along the edge of the display and in which semiconducting oxide transistor structures do not overlap any hydrogen-rich silicon nitride in accordance with an embodiment.

DETAILED DESCRIPTION

[0021] A display in an electronic device may be provided with driver circuitry for displaying images on an array of pixels. An illustrative display is shown in FIG. 1. As shown in FIG. 1, display 14 may have one or more layers such as substrate 24. Layers such as substrate 24 may be formed from insulating materials such as glass, plastic, ceramic, and/or other dielectrics. Substrate 24 may be rectangular or may have other shapes. Rigid substrate material (e.g., glass) or flexible substrate material (e.g., a flexible sheet of polymer such as a layer of polyimide or other materials) may be used in forming substrate 24.

[0022] Display 14 may have an array of pixels 22 (sometimes referred to as pixel circuits) for displaying images for a user. The array of pixels 22 may be formed from rows and columns of pixel structures on substrate 24. There may be any suitable number of rows and columns in the array of pixels 22 (e.g., ten or more, one hundred or more, or one thousand or more).

[0023] Display driver circuitry such as display driver integrated circuit 16 may be coupled to conductive paths such as metal traces on substrate 24 using solder or conductive adhesive. Display driver integrated circuit 16 (sometimes referred to as a timing controller chip) may contain communications circuitry for communicating with system control circuitry over path 25. Path 25 may be formed from traces on a flexible printed circuit or other cable. The control circuitry may be located on a main logic board in an electronic device such as a cellular telephone, computer, set-top box, media player, portable electronic device, wrist-watch device, tablet computer, or other electronic equipment in which display 14 is being used. During operation, the control circuitry may supply display driver integrated circuit 16 with information on images to be displayed on display 14. To display the images on display pixels 22, display driver integrated circuit 16 may supply corresponding image data to data lines D while issuing clock signals and other control signals to supporting thin-film transistor display driver circuitry such as gate driver circuitry 18 and demultiplexing circuitry 20.

[0024] Gate driver circuitry 18 may be formed on substrate 24 (e.g., on the left and right edges of display 14, on only a single edge of display 14, or elsewhere in display 14). Demultiplexer circuitry 20 may be used to demultiplex data signals from display driver integrated circuit 16 onto a plurality of corresponding data lines D with the illustrative arrangement of FIG. 1, data lines D run vertically through display 14. Each data line D is associated with a respective column of display pixels 22. Gate lines G run horizontally through display 14. Each gate line G is associated with a respective row of display pixels 22. Gate driver circuitry 18 may be located on the left side of display 14, on the right side of display 14, or on both the right and left sides of display 14, as shown in FIG. 1.

[0025] Gate driver circuitry 18 may assert gate signals (sometimes referred to as scan signals) on the gate lines in display 14. For example, gate driver circuitry 18 may receive clock signals and other control signals from display driver integrated circuit 16 and may, in response to the received signals, assert a gate signal on gate lines G in sequence, starting with the gate line signal G in the first row of display pixels 22. As each gate line is asserted, the

corresponding display pixels in the row in which the gate line is asserted will display the display data appearing on the data lines D.

[0026] Display driver circuitry 16 may be implemented using one or more integrated circuits. Display driver circuitry such as demultiplexer circuitry 20 and gate driver circuitry 18 may be implemented using one or more integrated circuits and/or thin-film transistor circuitry on substrate 24. Thin-film transistors may be used in forming circuitry in display pixels 22. To enhance display performance, thin-film transistor structures in display 14 may be used that satisfy desired criteria such as leakage current, switching speed, drive strength, uniformity, etc. The thin-film transistors in display 14 may, in general, be formed using any suitable type of thin-film transistor technology (silicon-based, semiconducting-oxide-based, etc.).

[0027] With one suitable arrangement, which is sometimes described herein as an example, the channel region (active region) in some thin-film transistors on display 14 is formed from silicon (e.g., silicon such as polysilicon deposited using a low temperature process, sometimes referred to as LTPS or low-temperature polysilicon) and the channel region in other thin-film transistors on display 14 is formed from a semiconducting oxide material (e.g., amorphous indium gallium zinc oxide, sometimes referred to as IGZO). If desired, other types of semiconductors may be used in forming the thin-film transistors such as amorphous silicon, semiconducting oxides other than IGZO, etc. In a hybrid display configuration of this type, transistors (e.g., LTPS transistors) may be used where attributes such as switching speed and good reliability are desired (e.g., for drive transistors to drive current through organic light-emitting diodes in pixels), whereas oxide transistors (e.g., IGZO transistors) may be used where low leakage current is desired (e.g., as display pixel switching transistors in a display implementing a variable refresh rate scheme or other scenario in which low leakage current is required). Other considerations may also be taken into account (e.g., considerations related to power consumption, real estate consumption, hysteresis, transistor uniformity, etc.).

[0028] Oxide transistors such as IGZO thin-film transistors are generally n-channel devices (i.e., NMOS transistors), but PMOS devices may be used for oxide transistors if desired. Silicon transistors can also be fabricated using p-channel or n-channel designs (i.e., LTPS devices may be either PMOS or NMOS). Combinations of these thin-film transistor structures can provide optimum performance for an organic light-emitting diode display.

[0029] In an organic light-emitting diode display, each pixel contains a respective organic light-emitting diode. A schematic diagram of an illustrative organic light-emitting diode display pixel is shown in FIG. 2. As shown in FIG. 2, pixel 22 may include light-emitting diode 26. A positive power supply voltage ELVDD may be supplied to positive power supply terminal 34 and a ground power supply voltage ELVSS may be supplied to ground power supply terminal 36. The state of drive transistor 28 controls the amount of current flowing through diode 26 and therefore the amount of emitted light 40 from display pixel 22.

[0030] To ensure that transistor 28 is held in a desired state between successive frames of data, display pixel 22 may include a storage capacitor such as storage capacitor Cst. The voltage on storage capacitor Cst is applied to the gate of transistor 28 at node A to control transistor 28. Data can be

loaded into storage capacitor Cst using one or more switching transistors such as switching transistor 30. When switching transistor 30 is off, data line D is isolated from storage capacitor Cst and the gate voltage on terminal A is equal to the data value stored in storage capacitor Cst (i.e., the data value from the previous frame of display data being displayed on display 14). When gate line G (sometimes referred to as a scan line) in the row associated with pixel 22 is asserted, switching transistor 30 will be turned on and a new data signal on data line D will be loaded into storage capacitor Cst. The new signal on capacitor Cst is applied to the gate of transistor 28 at node A, thereby adjusting the state of transistor 28 and adjusting the corresponding amount of light 40 that is emitted by light-emitting diode 26.

[0031] The illustrative pixel circuit of FIG. 2 is just one example of circuitry that may be used for the array of pixels in display 14. For example, each pixel circuit may include any suitable number of switching transistors (one or more, two or more, three or more etc.). If desired, organic light-emitting diode display pixel 22 may have additional components one or two emission enable transistors coupled in series with the drive transistor to help implement functions such as threshold voltage compensation, etc.). In general, the thin-film transistor structures described herein may be used with the pixel circuit of FIG. 2 or with any other suitable pixel circuits. As an example, the thin-film transistor structures described herein may be used in six-transistor pixel circuits having three switching transistor controlled by two different scan lines, a drive transistor coupled in series with an organic light-emitting diode, and two emission enable transistors controlled by two respective emission lines and coupled in series with the drive transistor and light-emitting diode to implement threshold voltage compensation functions. Thin-film transistor circuits for pixel in display 14 may also have other numbers of switching transistors (e.g., one or more, two or more three or more, four or more, etc.) or other numbers of emission transistors (no emission transistors, one or more emission transistors, two or more emission transistors, three or more emission transistors, four or more emission transistors, etc.). The transistors in each pixel circuit may be formed from any suitable combination of silicon and silicon oxide transistors and any suitable combination of NMOS and PMOS transistors. The pixel circuitry of FIG. 2 is merely illustrative.

[0032] Organic light-emitting diode pixels such as pixel 22 of FIG. 2 or any other suitable pixel circuits for display 14 may use thin-film transistor structures of the type shown in FIG. 3. In this type of structure, two different types of semiconductor are used. As shown in FIG. 3, pixel circuitry 72 may include pixel structures such as light-emitting diode cathode terminal 42 and light-emitting diode anode terminal 44. Organic light-emitting diode emissive material 47 may be interposed between cathode 42 and anode 44, thereby forming light-emitting diode 26 of FIG. 2. Dielectric layer 46 may serve to define the layout of the pixel (e.g., alignment of the emissive material 47 with respect to anode 44) and may sometimes be referred to as to pixel definition layer. Planarization layer 50 (e.g., a polymer layer) may be formed on top of thin-film transistor structures 52. Thin-film transistor structures 52 may be formed on substrate 24. Substrate 24 may be rigid or flexible and may be formed from glass, ceramic, crystalline material such as sapphire, polymer (e.g., a flexible layer of polyimide or a flexible sheet of other polymer material), etc.

[0033] Thin-film transistor structures 52 may include silicon transistors such as silicon transistor 58. Transistor 58 may be an LTPS transistor formed using a “top gate” design and may be used to form any of the transistors in pixel 22 (e.g., transistor 58 may serve as a drive transistor such as drive transistor 28 in pixel 22 of FIG. 2). Transistor 58 may have a polysilicon channel 62 that is covered by gate insulator layer 64 (e.g., a layer of silicon oxide or other inorganic layer). Gate 66 may be formed from patterned metal (e.g., molybdenum, as an example). Gate 66 may be covered by a layer of interlayer dielectric (e.g., silicon nitride layer 68 and silicon oxide layer 70 or other inorganic layers or organic material). Source-drain contacts 74 and 76 may contact opposing sides of polysilicon layer 62 to form the silicon thin-film transistor 58.

[0034] Gate 66 may be formed from a metal layer GATE, source-drain terminals 74 and 76 may be formed from a metal layer SD, and an additional metal layer M3 may be used to form metal via 75 to couple source-drain electrode 74 to anode 44.

[0035] Circuitry 72 may also include capacitor structures such as capacitor structure 100 (e.g., capacitor Cst of FIG. 2). Capacitor structure 100 may have a lower electrode such as electrode 102 and an upper electrode such as electrode 104. Lower electrode 102 may be formed from a patterned portion of metal layer SD. Upper electrode 104 may be formed from a patterned portion of metal layer M3. A dielectric layer may separate upper electrode 104 and lower electrode 102. The dielectric layer may be formed from a high-dielectric-constant material such as hafnium oxide or aluminum oxide or may be formed from one or more other layers. In the example of FIG. 3, the dielectric layer separating electrodes 102 and 104 includes two passivation layers 106 and 108. Layers 106 and 108 may be formed from silicon oxide and silicon nitride, respectively. Other inorganic layers and/or organic layers may be used in forming layers 106 and 108, if desired (e.g., oxide layers, nitride layers, polymer layers, etc.).

[0036] Thin-film transistor structures 52 may include semiconducting oxide transistors such as semiconducting oxide transistor 60. The thin-film transistor in structures 60 may be a “bottom gate” oxide transistor. Gate 110 of transistor 60 may be formed from a portion of metal layer GATE. The semiconducting oxide channel region of transistor 60 (channel 112) may be formed from a semiconducting oxide such as IGZO. Interlayer dielectric (e.g., layers 68 and 70) may be interposed between gate 110 and semiconducting oxide channel 112 and may serve as the gate insulator layer for transistor 60. Oxide transistor 60 may have source-drain terminals 114 and 116 formed from patterned portions of metal layer SD.

[0037] Buffer layer 122 on substrate 24 may be formed from a layer of polyimide or other dielectric. Back-side metal layer 118 may be formed under transistor 58 to shield transistor 58 from charge in buffer layer 122. Buffer layer 120 may be formed over shield layer 118 and may be formed from a dielectric (e.g., an organic layer such as a polymer layer or other insulating layer).

[0038] Additional illustrative thin-film transistor circuitry 72 for pixel circuit 22 is shown in FIG. 4. In the example of FIG. 4, oxide transistor 60 has been formed using a “top gate” arrangement. With this approach, gate 110 for transistor 60 is formed from a patterned portion of metal layer M3. Metal layer M3 may also be used in forming electrode

104 of capacitor **100** (as an example). Metal layer SD may be used in forming electrode **102**, source-drain terminals **74** and **76**, and source-drain terminals **114** and **116**. Oxide transistor **60** may have semiconducting oxide channel **112**. Dielectric (e.g., passivation layers **106** and **108** and/or a high-dielectric-constant material or other insulating material) may be interposed between channel **112** and gate **110**.

[0039] In the example of FIG. 5, transistor **60** of circuitry **72** is a bottom gate oxide transistor. Dielectric layer **132** may be interposed between upper electrode **104** and lower electrode **102** of capacitor **100**. Dielectric layer **132** may be formed from an inorganic insulator (e.g., silicon oxide, silicon nitride, etc.) or may be formed from a polymer layer. Layer **132** may sometimes be referred to as an interlayer dielectric layer and may be formed on top of interlayer dielectric layers **68** and **70**. In capacitor **100**, layer **132** separates electrodes **102** and **104** from each other. Upper electrode **104** may be formed from metal layer SD. Metal layer SD may also be used in forming source-drain electrodes **74** and **76** for silicon transistor **58** and source-drain electrodes **114** and **116** for oxide transistor **60**. Lower electrode **102** may be formed a metal layer that is deposited and patterned between gate metal GATE for gate **66** and metal layer SD. The metal layer that is used in forming lower electrode **102** of FIG. 5 may sometime be referred to as metal layer M2S. In addition to being used to form lower electrode **102** of capacitor **100**, metal layer M2S may be used to form gate **110** of transistor **60**.

[0040] In the configuration of FIG. 5, metal layer M2S has been formed on dielectric layers **68** and **70**. Dielectric layer **132** is interposed between gate **110** and semiconducting oxide channel **120** and serves as the gate insulator for transistor **60**. A passivation layer such as dielectric layer **130** may be formed over channel **120** to protect the semiconducting oxide interface of channel **120**. Dielectric layer **130** and dielectric layer **132** may each be formed from silicon oxide, silicon nitride, aluminum oxide, hafnium oxide, a single layer, multiple sublayers, or miter insulating materials.

[0041] FIG. 6 shows another illustrative configuration for transistor circuitry **74**. In the arrangement of FIG. 6, circuitry **74** has three metal layers. Metal layer GATE is used in forming lower electrode **102** for capacitor **100** and is used in forming gate **66** for silicon transistor **58**. Metal layer SD is used in forming source-drain terminals **74**, **76**, **114**, and **116**. An additional metal layer, sometimes referred to as metal layer G2, is interposed between metal layer SD and metal layer GATE. Metal layer G2 may be used in forming upper electrode **104** in capacitor **100** and may be used in forming gate **110** in oxide transistor **60**. Oxide transistor **60** of FIG. 6 is a bottom gate transistor. Dielectric layer **70** serves as the gate insulator for transistor **60** and is interposed between gate **110** and semiconducting oxide channel **120**. Passivation layer **130** may protect channel region **120**. In capacitor **100**, dielectric layer **68** is interposed between upper electrode **104** and lower electrode **102**.

[0042] In the illustrative configuration for circuitry **72** that is shown in FIG. 7, upper electrode **104** of capacitor **100** is formed from metal layer SD. Metal layer SD may also be used in forming source-drain electrodes **74** and **76** in silicon transistor **58** and source-drain electrodes **114** and **116** in oxide transistor **60**. Oxide transistor **60** may have a bottom gate configuration. Gate **110** of oxide transistor **60** and gate **66** of silicon transistor **58** may be formed from respective

portions of the same metal layer (i.e., metal layer GATE). An additional metal layer (metal layer M2S) may be formed between metal layer GATE and metal layer SD. Metal layer M2S may be used in forming lower electrode **102** in capacitor **100**. Dielectric layer **132** may be interposed between lower electrode **102** and upper electrode **104**. Passivation layer **130** may be used to protect the interface of semiconducting oxide layer **120** in oxide transistor **60**.

[0043] It may be desired to minimize the inactive border region of display **14**. Pixels **22** display images for a user, so the portion of display **14** that is occupied by the array of pixels **22** forms the active area of display **14**. Portions of display **14** that surround the active area do not display images for a user and are therefore inactive. The amount of the inactive area that is visible to a user can be minimize or eliminated by bending portions of substrate **24** downwards out of the plane of the active area (e.g., at a right angle or at other suitable angles). To ensure that display **14** is not damaged during bending, the structures on substrate **24** can be configured to enhance flexibility of display **14** in bent portions of the inactive area. For example, insulating layers such as inorganic dielectric layers and other layers of display **14** (e.g., some of the metal layers) may be partly or completely removed in the inactive area to prevent stress-induced cracking or other damage during bending (particularly to metal signal lines).

[0044] Consider, as an example, display **14** of FIG. 8. As shown in FIG. 8, inactive edge area **204** has been bent downwards from active area **206** about bend axis **200**. Lines **202** (e.g., data lines or other metal signal traces in display **14**) traverse the bend at axis **200**. To prevent the formation of cracks and other damage to the structures of display **14**, some or all of the structures of display **14** other than lines **202** may be selectively removed in inactive area **204** (while being retained in active area **206** to form thin-film transistor circuitry **72** such as circuitry **72** of FIGS. 3, 4, 5, 6, and 7). With this approach, the metal layer that forms lines **202** may be located at a greater distance above substrate **24** in active area **206** than in inactive area **204**.

[0045] To accommodate the disparity in height between the layers of active area **206** and inactive area **204**, a series of steps may be thrilled in the dielectric layers of display **14**. The steps may slowly lower the height of the metal traces that are supported on the dielectric layers, so that the metal traces can change height gradually and do not become cut off due to a sharp height discontinuity in the dielectric.

[0046] An illustrative set of dielectric layers having a stepped profile so that metal lines **202** can transition successfully between active area **206** and inactive area **204** is shown in FIG. 9. As shown in FIG. 9, display **14** may have dielectric layers such as layers **L1**, **L2**, and **L3** (see, e.g., the dielectric layers of circuitry **72** in FIGS. 3, 4, 5, and 6). Layers **L1**, **L2**, and **L3** may be formed from one or more sublayers of polymer and/or inorganic layers silicon oxide, silicon nitride, hafnium oxide, aluminum oxide, etc.). There are three dielectric layers **L1**, **L2**, and **L3** in the example of FIG. 9, but this is merely illustrative. On the left side of FIG. 9 in active area **206**, all dielectric layers **L1**, **L2**, and **L3** are present, so metal line **202** is located at its maximum distance from substrate **24**. A staircase (stepped) dielectric profile is created by selectively removing layers **L3**, **L2**, and **L1** at successively greater lateral distances from active area **206**. The steps in height that are formed in the dielectric layers allow metal line **202** to smoothly transition from its maxi-

mum height (in active area 206) to its minimum height in inactive area 204. Line 202 may, for example, rest on or near the surface of substrate 24 in inactive area 204.

[0047] FIG. 10 is a cross-sectional side view of illustrative thin-film transistor circuitry 72 for display 14 in a configuration in which upper layers of material have been removed from the display to facilitate display bending in a bend region along the inactive edge of the display. In the example of FIG. 10, all dielectric layers except passivation layers 106 and 108 have been removed from substrate 24 in region 204, so metal lines 202 (e.g., data lines and/or other signal lines in display 14) rest on the surface of substrate 24. This facilitates bending of substrate 24 in region 204. In general, any suitable thin-film transistor circuitry 72 may be used with the Inactive area material removal scheme of FIG. 10 (e.g., circuitry such as circuitry 72 of FIGS. 3, 4, 5, 6, 7, and 8, etc.). The circuitry of FIG. 10 is merely illustrative.

[0048] In the illustrative configuration of FIG. 10, upper capacitor electrode 104 has been formed from metal layer M3. Metal layer M3 may also be used in forming via 74 to couple source-drain terminal 74 to anode 44. Lower capacitor electrode 102 may be formed from metal layer SD. Metal layer SD may also be used to form source-drain terminals 74, 76, 114, and 116. Passivation layers 106 and 108 (e.g., silicon nitride and silicon oxide layers, respectively) or other suitable dielectric layer(s) may be formed on top of semiconducting oxide channel 112. In capacitor 100, one of layers 106 and 108 may be locally removed to reduce dielectric thickness and thereby enhance the capacitance value of capacitor 100. As shown in FIG. 10, for example, layer 106 may be removed under electrode 104, so that layer 106 does not overlap capacitor 100 and so that only dielectric layer 108 is interposed between upper electrode 104 and lower electrode 102 of capacitor 100. Dielectric layer 108 may be formed from silicon nitride, which has a dielectric constant greater than that of silicon oxide, so the use of dielectric layer 108 as the exclusive insulating layer between electrodes 102 and 104 may help enhance the capacitance of capacitor 100. An additional photolithographic mask may be used to selectively remove silicon oxide layer 106. This mask may also be used in forming a dielectric step for metal lines 202 (see, e.g., the dielectric steps of FIG. 9). Metal lines 202 may be formed from metal layer SD. In active area 206 of display 14, metal lines 202 may be formed from portions of metal layer SD that are supported by dielectric layers such as layers 122, 120, 64, 68, and 70 (i.e., layers of the type that may form illustrative layers L1, L2, and L3 of FIG. 9). Although there are three height steps in the example of FIG. 9, one step, two steps, three steps, or more than three steps may be formed.

[0049] The illustrative configuration of FIG. 11 is similar to that of FIG. 10, but has an oxide transistor with a locally removed silicon nitride passivation layer. Passivation layer 106 of FIG. 10 may be a silicon nitride layer. Silicon nitride layer 106 may have a high concentration of hydrogen to passivate dangling bonds in polysilicon layer 62 of silicon transistor 58. For effective passivation, silicon nitride layer 106 may overlap transistor 58 and silicon channel 62. It may be desirable to prevent the hydrogen from silicon nitride layer 106 from reaching semiconducting oxide channel 112. This can be accomplished by removing nitride layer 106 from transistor 60. For example, a photolithographic mask may be used to pattern silicon nitride layer 106 so that silicon nitride layer 106 is absent under semiconducting

oxide 112 (i.e., so that there is no portion of nitride layer 106 that overlaps transistor 60). By ensuring that no silicon nitride is present between gate 110 and oxide 112, the performance of transistor 60 will not be degraded due to hydrogen from layer 106.

[0050] The foregoing is merely illustrative and various modifications can be made by those skilled in the art without departing from the scope and spirit of the described embodiments. The foregoing embodiments may be implemented individually or in any combination.

What is claimed is:

1. A display pixel circuit, comprising:
a light-emitting diode;
a semiconducting oxide switching thin-film transistor;
a silicon driving thin-film transistor having at least a portion of a source-drain terminal formed from a metal layer;
a capacitor having first and second electrodes, wherein the first electrode is formed from the metal layer.
2. The display pixel circuit defined in claim 1, wherein the semiconducting oxide switching thin-film transistor has a source-drain terminal formed from the metal layer.
3. The display pixel circuit defined in claim 2, wherein the semiconducting oxide switching thin-film transistor has a gate electrode formed from an additional metal layer, and wherein the silicon driving thin-film transistor has a gate electrode formed from the additional metal layer.
4. The display pixel circuit defined in claim 1, wherein the second electrode is formed from an additional metal layer, and wherein a metal via formed from the additional metal layer couples the source-drain terminal of the silicon driving thin-film transistor to the light-emitting diode.
5. The display pixel circuit defined in claim 4, wherein the silicon driving thin-film transistor comprises a gate electrode formed from a gate metal layer.
6. The display pixel circuit defined in claim 5, wherein the semiconducting oxide switching thin-film transistor comprises a gate electrode formed from the gate metal layer.
7. The display pixel circuit defined in claim 5, wherein the semiconducting oxide switching thin-film transistor comprises a gate electrode formed from the additional metal layer.
8. The display pixel circuit defined in claim 1, wherein the second electrode is formed from an additional metal layer, and wherein the semiconducting oxide switching thin-film transistor composes a gate electrode formed from the additional metal layer.
9. The display pixel circuit defined in claim 1, wherein the silicon driving thin-film transistor comprises a silicon channel, and wherein the semiconducting oxide switching thin-film transistor comprises a semiconducting oxide channel, the display pixel circuit further comprising:
a buffer layer that overlaps the silicon channel and that does not overlap the semiconducting oxide channel.
10. The display pixel circuit, defined in claim 1, wherein the semiconducting oxide switching thin-film transistor comprises a semiconducting oxide channel, the display pixel circuit further comprising:
a buffer layer that overlaps the semiconducting oxide channel and that does not overlap the capacitor.

11. A display, comprising:
an array of pixels, each pixel in the array comprising:
a light-emitting diode;
a semiconducting oxide switching transistor;
polysilicon drive transistor; and
a storage capacitor coupled between the semiconducting oxide switching transistor and the light-emitting diode.

12. The display defined in claim **11**, wherein the capacitor comprises first and second electrodes, and wherein the first electrode is formed from a first metal layer.

13. The display defined in claim **12**, wherein the semiconducting oxide switching transistor comprises a gate electrode formed from the first metal layer.

14. The display defined in claim **12**, wherein the polysilicon drive transistor comprises a gate electrode formed from the first metal layer.

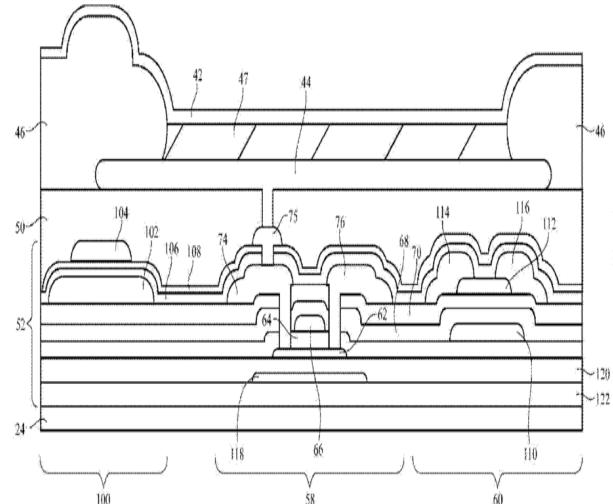
15. The display defined in claim **14**, wherein the second electrode is formed from a second metal layer, and wherein the semiconducting oxide switching transistor comprises a gate electrode formed from the second metal layer.

16. The display defined in claim **15** further comprising:
a common source-drain metal layer forms source-drain terminals for the semiconducting oxide switching transistor and forms source-drain terminals for the polysilicon drive transistor.

17. The display defined in claim **11**, wherein the polysilicon drive transistor comprises a polysilicon channel and the semiconducting oxide switching transistor comprises a semiconducting oxide channel, the display further comprising:
a buffer layer that overlaps the polysilicon channel and that does not overlap the semiconducting oxide channel.

18. A display, comprising:
an array of light-emitting diodes;
silicon thin-film transistors each coupled to a respective one of the light emitting diodes and each having a gate that controls an amount of current provided to the respective one of the light-emitting diodes;
semiconducting oxide thin-film transistors each having a semiconducting oxide channel and each providing voltage to the gate of a corresponding one of the silicon thin-film transistors; and
a buffer layer that overlaps the silicon thin-film transistors without overlapping the semiconducting oxide channels.

19. The display defined in claim **18**, further comprising:
a storage capacitor coupled between each of the semiconducting oxide thin-film transistors and the respective one of the light-emitting diodes; and
an additional buffer layer that overlaps the semiconducting oxide channels without overlapping the storage capacitor.


20. The display defined in claim **18**, wherein the silicon thin-film transistors comprise source-drain terminals formed from a first metal layer and gate electrodes formed from a second metal layer, and wherein the semiconducting oxide thin-film transistors comprise source-drain terminals formed from the first metal layer and gate electrodes formed from the second metal layer

* * * * *

专利名称(译)	硅和半导体氧化物薄膜晶体管显示器		
公开(公告)号	US20170062539A1	公开(公告)日	2017-03-02
申请号	US15/351266	申请日	2016-11-14
[标]申请(专利权)人(译)	苹果公司		
申请(专利权)人(译)	苹果公司.		
当前申请(专利权)人(译)	苹果公司.		
[标]发明人	TSAI TSUNG TING GUPTA VASUDHA LIN CHIN WEI		
发明人	TSAI, TSUNG-TING GUPTA, VASUDHA LIN, CHIN-WEI		
IPC分类号	H01L27/32 H01L51/00 H01L27/12		
CPC分类号	H01L2251/5338 H01L27/3262 H01L27/1225 H01L51/0097 H01L29/7869 H01L27/3258 H01L27/3265 H01L29/78672 H01L27/3276 H01L27/1251 H01L27/1255 Y02E10/549 H01L29/78651		
其他公开文献	US10032841		
外部链接	Espacenet USPTO		

摘要(译)

电子设备显示器可以具有像素电路阵列。每个像素电路可以包括有机发光二极管和驱动晶体管。可以调节每个驱动晶体管以控制流过有机发光二极管的电流量。每个像素电路可以包括一个或多个附加晶体管，例如开关晶体管和存储电容器。半导体氧化物晶体管和硅晶体管可用于形成像素电路的晶体管。可以使用金属层，半导体结构和介电层来形成存储电容器和晶体管。可以沿着显示器的边缘去除一些层以便于弯曲。介电层可以具有阶梯式轮廓，当数据线延伸到无效边缘区域时，该阶梯式轮廓允许阵列中的数据线向下逐步朝向基板的表面。

